
Table 2.  Mouse circadian mutants and observed circadian and physiological phenotypes. 
 

Gene Circadian phenotype Ref. Associated physiological abnormality Ref. 

Bmal1/Mop3 
(Arntl) 

Null mutant 
Loss-of-circadian activity rhythm  

in DD [1] 

 
Infertility 

Decreased adult body weight 
Increased tendon calcification 

Abnormal gluconeogenesis and lipogenesis 
Hypersensitive to chemotherapeutic agent 

Premature aging syndrome 
Increased sleep fragmentation 

 

[1-8] 

 
Bmal2/Mop9/CLIF 

(Arntl2) 
 

[Paralog of Bmal1; dimerizes with 
CLOCK, NAPS2, and HIF1α] [9, 10] ND ⎯ 

ClockΔ19 
Antimorph 

Semidominant, 4 hr longer period 
followed by loss-of-circadian 

activity rhythm in DD 
[11] 

 
Hyperphagic & Obese 

Abnormal gluconeogenesis 
Hypersensitive to chemotherapeutic agent 

Enhanced response to cocaine 
Mania phenotype 

Decreased duration of sleep time 
 

[3, 7, 
12-14] 

 
Clock 

Null mutant 
 

0.5 hr shorter period [15] ND ⎯ 



 
Npas2/Mop4 
Null mutant 

 

0.2 hr shorter period [16] 

 
Impaired memory 

Reduced sleep amount during night time 
 

[16, 17] 

 
Clock & Npas2 

Double null mutant 
 

Complete loss of circadian activity 
rhythm in DD [18] ND ⎯ 

Per1 
Null mutant 

 
0-0.5 hr shorter period/ 

some animals lose circadian activity 
rhythm in DD 

 

[19-21] 
 

Lack of sensitization to cocaine 
 

[22] 

Per2 
Per2tm1Brd 

Null mutant 
1.5 hr shorter period and tendency for 

loss of circadian rhythm [20, 23] 

 
Increased tumor development following  

genotoxic stress 
Hyper-sensitization to cocaine 

Improper alcohol intake 
Early onset of sleep 

 

[22, 24-
26] 

 
Per1 & Per2 

Double null mutant 
 

Complete loss of circadian activity 
rhythm in DD [19, 20] ND ⎯ 

 
Per3 

Null mutant 
 

0-0.5 hr shorter period [27] 
 

ND 
 

⎯ 



 
Cry1 

Null mutant 
 

1 hr shorter period [28, 29] ND ⎯ 

 
Cry2 

Null mutant 
 

1 hr longer period [30] 
 

ND 
 

⎯ 

Cry1 & Cry2 
Double null mutant 

Complete loss of circadian activity 
rhythm in DD [28, 29] 

 
Delayed hepatocyte re-generation 

Resistant to chemotherapeutic agent’s toxicity 
Increased NREM sleep drive 

 

[3, 24, 
31] 

 
CK1ε 

(Csnk1e) 
tau* mutant 

 

Semidominant,  
4 hr shorter period [32] 

 
Reduced growth rate 

Enhanced metabolic rate 
 

[33, 34] 

 
CK1δ 

(Csnk1d) 
Null mutant 

 

ND ⎯ Postnatal (within days) lethal [35] 

 
CK1δ 

(Csnk1d) 
T44A mutant 

 

0.5 hr shorter period [35] ND ⎯ 



 
Rev-erbα 
(Nr1d1) 

Null mutant 
 

0.5 hr shorter period/ 
Altered photic entrainment [36] ND ⎯ 

 
Rev-erbβ 
(Nr1d2) 

 

ND ⎯ ND ⎯ 

Rora 
Staggerer mutant 0.5 hr shorter period [37] 

 
Cerebellar ataxia 

Abnormal bone metabolism 
 

[38, 39] 

Rorb 
Null mutant 0.5-hr longer period [40] 

 
Locomotor difficulties 

Retinal degeneration/blind 
Male reproductive abnormality during first 6-

mo of age 
 

[40] 

 
Rorc 

Null mutant 
 

ND ⎯ 
 

Disrupted lymphoid organ development 
 

[41, 42] 

 
Timeless 

Null mutant 
 

ND ⎯ Embryonic lethal [43] 



 
Dec1/Stra13/ 
Sharp2/Clast5 

(Bhlhb2) 
Null mutant 

 

No circadian deficit in clock gene 
expression [44] 

 
Impaired T lymphocyte activation 
Age-related autoimmune disease 

Defect in skeletal muscle regeneration 
following injury 

 

[45, 46] 

 
Dec2/Sharp1 

(Bhlhb3) 
 

ND ⎯ ND ⎯ 

 
E4bp4 
(Nfil3) 

 

Upstream regulator of Per2, no 
behavioral analysis [47] ND ⎯ 

 
Melanopsin 

(Opn4) 
Null mutant 

 

Reduced phase-shift response to light [48, 49] Diminished pupilary light reflex [50] 

Vip 
Null mutant 

 
Abnormal entrainment to light cycles 
Dissociated circadian wheel-running 

rhythms in DD 
Reduced amplitude in behavioral 

rhythms in DD 
 

[51, 52] Impaired temporal regulation of  
metabolism and feeding [53] 



Vipr2 
Null mutant 

 
Abnormal entrainment to light cycles 
Dissociated circadian wheel-running 

rhythms in DD 
Reduced amplitude in behavioral 

rhythms in DD 
Impaired responses to light 

 

[51, 54] Impaired temporal regulation of  
metabolism and feeding [53] 

 
Nocturnin 
(Ccrn41) 

Null mutant 
 

No circadian behavioral deficits [55] 
 

Resistance to diet-induced obesity 
 

[55] 

 

*Hamster mutation. 
ND = None determined 
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